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The paper gives the result of a study on the efflux of gases through circular 
apertures. The problem is considered as an example of a transition from the gas- 
dynamic to the gaskinetic r6gime. 

The mass flow of helium, argon and nitrogen was measured for a range of up- 
stream pressures corresponding to (mean free path)/(aperture diameter) from 
about 50 to 5 x within this range the transition from molecular effusion to 
inviscid, transonic flow takes place. The theory for the two asymptotic limits is 
discussed and first-order corrections to the free molecular and inviscid limit 
formulae are given. 

1. Introduction 
Consider steady gas flow from one large container to another through a circular 

aperture of negligible lip thickness. The symbols pl ,  pl, TI, etc., denote the vari- 
ables of state in the upstream container, and p 2 ,  pz, T2 the corresponding vari- 
ables downstream, both measured a t  a sufficient distance from the aperture. 

This is called ‘orifice ’ flow here. For upstream densities such that the mean free 
path A is large compared to the aperture diameter D, the flow corresponds to 
Knudsen’s ‘effusion’ (Knudsen 1909); for sufficiently high pressure the flow 
approaches the potential problem of outflow of a fluid from a vessel, first studied 
by Kirchhoff for incompressible flow, and by Chaplygin (1904), Frank1 (1947) 
and Guderley (1957) for compressible-fluid flow. 

The study of orifice flow presented here has its origin in an attempt to find one 
simple and experimentally realizable flow problem for which both the Euler 
limit at infinite Reynolds number and the free molecular limit at zero Reynolds 
number are well defined and, at least in principle, theoretically understood, if 
not worked out in detail. I n  studying such a problem it is hoped to make some 
step in the direction of a better understanding of the transition from gasdynamic 
to gaskinetic flow. There do not exist many flow problems which fall within this 
category. Usually the free molecular limit involves unknown or only em- 
pirically known surface interaction parameters like slip and accommodation 
coefficients . 

In  this paper we will discuss only the mass flow m through a circular aperture 
for the case of large pressure ratios across it. To define the range of parametaw 
and the relation of the present investigation to Knudsen’s classical work and 
the various theoretical and experimental studies of orifice flow at high Reynolds 
number, it  is most convenient to present all possible orifice flow rhgimes in a, 
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suitably defined Mach number v$ Reynolds number plane. From the six vari- 
ables p,, p,, T,, p,, pz ,  T,, one can eliminate three by the equation of state and by 
simple thermodynamics, which yields T, = T, since we deal with the Joule- 
Thomson process of a perfect gas. Choosing the three variables p,, p, and p,, we 
can define a characteristic velocity W by 
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and consequently Mach and Reynolds numbers by 

Here v, is the kinematic viscosity of the gas evaluated at the equilibrium up- 
stream conditions. It is often more convenient to use Ma and Re rather than the 
Knudsen number AID because one does not have to adopt a specific A as related 
to v and because Ma and Re are better suited to the high-pressure limit; however, 
one may of course replace MalRe by RID if one prefers this notation. 

Mu and Re can be chosen independently in the experimental arrangement. In  
a (Mu2, Re)-plane (figure l), all possible (adiabatic) orifice flows are contained 
within a strip 0 < Mu2 < 1; O <  Re < co. Re = 0 is the free molecular limit, 
Re = m the Euler limit. Two paths between these limits are particularly distinct. 
For pressure ratios near unity, i.e. pl/p2 + 1 and thus Ma = 0, one passes from 
Knudsen flow at Re = 0 through a Stokes-type regime to Kirchhoff flow 
Re = co. For large pressure ratios, i.e. pJp, B 1, Ma + 1, one passes from 
free molecular flow through a region of viscous compressible fluid flow to 
transonic orifice flow a t  Re = co. Knudsen’s investigations followed the paths 
Nu = 0; the present experiments cover the range for Ma = 1. 
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The mass flow through the orifice can be written in terms of the orifice area A 
and the characteristic velocity W simply in the form 

riz = I'plWA, 

where I' is a dimensionless factor which depends on the dimensionless parameters 
Ma,  Re, the ratio of specific heats y ,  and in the transition region possibly on slip, 
accommodation coefficients, and possibly a Reynolds number based on the bulk 
viscosity coefficient. The functional form of I? and hence of riz in the various limits 
can then be deduced. 

More than fifty years ago Knudsen (1909) derived his 'effusion' formula from 
the kinetic theory of gases; in the present notation Knudsen's result becomes 

M a  rfi-to = - J(W' 
The numerical factor here is a direct (but unfortunately not very sensitive) 

consequence of the analytical form of the Maxwell distribution. Knudsen's 
experiments which did check this numerical factor were therefore at the time 
considered crucial in verifying the existence of a Maxwell distribution in a gas. 

In  the opposite limit where Re + co, one has 

r = + m  =f(rtJfa); 

in particular for the conditions with M a  
DaDer. I? can be written 

1 which are of prime interest in this 
I I  

where a(?) is a theoretically well-defined coefficient which accounts for the dif- 
ference in mass flow between a smooth nozzle (a = 1) and an orifice (a < 1). Many 
experiments have been performed on orifice flow at high Reynolds numbers 
because of its technical importance in metering problems. Curiously enough, no 
experimental work on the orifice flow as an interesting and challenging problem 
in transonic aerodynamics seems to have been carried out. In  the engineering 
tests the transonic character of the flow has not been appreciated, e.g. the large 
pressure ratios necessary to obtain maximum mas8 flow come as a surprise to 
many workers in the field. 

In  the present paper mass-flow measurements at pressure ratios of about 103 
are discussed. The measurements cover a range of Reynolds numbers from about, 
5 x 10-2 to 5 x lo2, or A/D ratios from 50 to 5 x In  this range the transition 
from free molecular flow to essentially inviscid flow is completed. Some of the 
results have been discussed before (Liepmann 1959, 1960). Further work for 
small pressure ratios is under way. 

2. The free molecular limit 
Choose a system of co-ordinates such that the wall with the orifice lies in the 

(y, 2)-plane. The number n of molecules striking an area A of the wall per unit 
time is then given by 

n = N A J O  -a Ja -a Jym uf(u, v, w) dudvdw, (1) 

5-2 
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where f denote the normalized equilibrium distribution function and N the 
number of molecules per unit volume. The same type of formula gives the number 
of molecules passing through an aperture of area A ,  except that f is now a non- 
equilibrium distribution function. Knudsen’s effusion formula is based on the 
assumption that in the limit of large mean free path A the lack of reflected mole- 
cules from the orifice area has a negligible effect on the distribution function, 
and hence the number n of molecules passing through A is obtained from (1) 
using the equilibrium distribution function. Thus one obtains the well-known 
expression 

in terms of the number of moIecules per unit volume Nl and the mean molecular 
velocity C1 = J[(8/n) RT,] far upstream of the orifice. The mass flow is then given 

(2) n = & N I A  

by 1 h=- .J( 2T) PI A J ( m A  

or (3) 

To assess the validity of this limit and to estimate the degree of approximation 
for finite AID, one has to study the nearly free molecular flow, i.e. the flow for 
large but finite AID. 

This can be carried out in a systematic fashion by iteratively solving the Boltz- 
mann equation in order to obtain the non-equilibrium f, which then yields the 
number of passing molecules or the mass flow from (1). This has been done by 
Narasimha (1960). The computations are quite involved and require a number of 
approximations. A less systematic but simpler demonstration of‘ the approach 
to free molecular flow is the following. 

Following Present (1958) one can obtain Knudsen’s formula (equation (2) 
above) in a slightly more refined way by computing the number of molecules 
scattered from a volume element d V in the direction of d A  which do not suffer 
a collision between d V and dA. Let E denote the mean number of collisions of a 
molecule per unit length travelled, i.e. 

E E A - - ~ =  .J 2 QN,  

where Q is the collision cross-section. The number of molecules scattered per 
unit time in d V is thus equal to NeZd T’. In  the free molecular limit, N = Nl 
everywhere and hence the number of molecules scattered such as to pass d A  
without further collision is given by 

dA cos 13 
d n  = S,, N~ El c1 -___ exp(-slr)dV, 

47rr2 

where r is the distance from the volume element d V to dA and 0 is the angle made 
with the normal to dA. Integration then gives 

dn = )ZINldA. 

The primary effect of the aperture is the reduction of the number of molecules 
in the neighbourhood of the opening due to the lack of reflexions. Thus N varies 
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from +N1 in the plane of the orifice to Nl at infinity. Consequently, E depends 
on r and the computation of d n  has to be slightly generalized to yield 

Actually C will depend on T as well (due to the predominant loss of fast molecules 
C < C1) but this effect is small and will be neglected. To evaluate dn, let N = &Vl 
for r < J D  and N = Nl for r > +D, C = 5,. Then 

d n  = tN1El(l+QelD+ ...) dA. 

For large A/D, i.e. small values of ED, this formula applies approximately to a 
finite orifice area A ,  and hence 

( SDn- ) m=)plZ,A 1 + - +  ... , 

Knudsen’s limit is thus justified, but the approach of r to the limit is quite slow 
since 

The numerical factor of & agrees very well with Narasimha’s computation which 
gave 0- 13. 

The increase in mass flow with increasing D / A  in equation ( 5 )  is due to the 
increase in mean free path near the orifice. For still larger D / R  the decrease in 
the density and the decrease in the temperature-and hence in C-will tend to 
check the mass flow increase. Qualitatively the process will continue toward 
the isentropic conditions at very large D/A. But to follow the process in detail 
beyond the first-order terms soon becomes hopelessly complicated. 

3. The Euler limit 
We now consider the flow at infinite Reynolds number and large pressure 

ratio pl/pz .  
For inviscid flow there exists a definite critical pressure ratio (pl/pa),  beyond 

which the downstream conditions cease to influence the upstream conditions. 
The maximum mass-flow is thus reached for (pl/p2),  for given upstream condi- 
tions. For a smooth nozzle critical pressure ratio and maximum mass flow are 

i.e. 

The sonic line in a sharp-edged orifice is S-shaped, and hence in the plane a$ the 
orifice the flow is partially subsonic and partially supersonic. Since the largest 
mass flow density occurs at local sonic velocity, the mass flow through an orifice 
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must be less than through a comparable smooth nozzle for which the sonic line 
is straight. Thus we can write 

with a = a(y). 
The two-dimensional problem, i.e. the flow through a slit, is sketched in figure 2 

following Guderley (1957). The problem is a typical transonic one and, when 
transformed into the hodograph plane, leads to a Tricomi boundary-value prob- 
lem. The flow becomes sonic at the lip of the slit and expands around the sharp 

FIGURE 2. Sketches of hodograph and physical planes for the two-dimensional 
problem of flow through a slit (after Guderley). 

edge locally like Prandtl-Meyer flow. The streamline thus maps on a character- 
istic in the hodograph plane. There exists a 'last characteristic ' such that the flow 
downstream of this characteristic has no influence on the upstream conditions. 
This last characteristic connects the sonic point on the axis of the nozzle with 
the corner. In  the hodograph plane this characteristic is an epicycloid from the 
sonic circle on the u-axis. Due to the symmetry in the pattern this characteristic 
meets the corner streamline or characteristic at  8 = 45". Consequently the 
critical pressure ratio pl/pz necessary for maximum mass flow is the one for 
which the flow past this last characteristic is established, i.e. the critical ratio is 
equal to the pressure ratio for a 45" turn from sonic in Prandtl-Meyer flow. This 
fact, thoughwell known to the experts on transonic flow, has apparently not been 
generally recognized. Table 1 gives some typical values for the critical local Mach 
number and the critical pressure ratio; they are interesting mainly because of 
their large values compared with Lava1 nozzle flow. 

The computation of the corresponding mass flow h is much more difficult, 
the Tricomi problem for the full hodograph equation (i.e. not the transonic 
approximation) has to be solved. Only one numerical computation seema to have 
been made: Frank1 (1947) computed the flow through a two-dimensional slit 
for a gas with y = 1-40. He found a = 0.85. 
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The axisymmetrical flow corresponding to the circular orifice is even more 
difficult to compute because the hodograph transformation here does not lead 
to  linear equations. Hence even the characteristics of the equation in the hodo- 
graph plane are not known a priori, so that the simple and general statement for 
the critical pressure ratio given above does not apply. One can give some simple 
qualitative arguments to show that the critical pressure ratios are even larger in 
axisymmetrical flow. Hence one expects smaller mass flow; but both should 
differ but little from the corresponding values for a slit. 

Y 
3.50 58.3 
2.76 25.6 
2.63 21.5 

513 

413 
715 

TABLE 1 

First of all note that the flow near the sharp lip is locally two-dimensional. 
Hence the streamline here maps again on the epicycloid in the hodograph plane. 
Thus the critical pressure ratio is smaller or larger thanin the planar case depend- 
ing on whether the characteristic from the axis intersects the epicycloid at a 
point corresponding to 8 2 45". 

Now near the axis the transonic approximation to the flow equation is ade- 
quate. Let u denote the excess velocity beyond a*, 8 the streamline angle, and 
r the radial co-ordinate; u and 0 are related along the characteristic by 

d u  
For plane flow 

thus 

near the axis drldu > 0, and hence 

Furthermore, at the intersection point of the characteristic with the epicycloid, 
i.e. at the corner, the flow is locally two-dimensional and hence the characteristic 
there approaches the slope of an epicycloid through the point. Hence the 'last 
characteristic ' for the axisymmetrical flow intersects the epicycloid corre- 
sponding to Prandtl-Meyer flow at the corner at an angle 0 > 45' and hence 
(p l /pB) ,  and Ma, are both larger than the corresponding two-dimensional values; 
one can thus expect m to be smaller for the orifice than the corresponding value 
for the slit. 

The difference should be very slight: the difference in characteristic slope can 
be estimated from the transonic nozzle expansion near the axis and is small; 
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hence considering that even a drastic change from a critical Mach number of 
Ma, = 1 for nozzle flow to a critical Mach number of about 2.75 in two-dimen- 
sional orifice flow reduces 01 only from unity to 0-85, one has reason to believe that 
the circular orifice will have nearly the same orifice coefficient as the slit. The 
difference lies probably within the error limits of both the numerical computation 
and the experiments. 

For large but finite Reynolds numbers, boundary-layer effects have to be 
considered. Along the orifice lip a viscous layer will exist and continue into the 
orifice, thus reducing the effective orifice area. From boundary-layer similarity 
one expects a mass-flow formula of the type 

m = &Re+m( 1 - CRe-t), 

where Cis some constant. A crude estimate of this constant can be obtained either 
by reducing the axisymmetrical problem to a Falkner-Skan flow using Mangler’s 
transformation and approximating to the outer flow (for example by three- 
dimensional sink flow) or by applying-since the flow is accelerating-a simple 
method of the Kkm&n-Pohlhausen type, e.g. Walz’s method as extended by 
Rott & Crabtree (1952) using the pressure distribution near the lip as computed 
by Frank1 for slit flow. 

A few computations like this have been carried out. However, near the lip 
pressure gradients are large and the actual flow is complicated by interaction 
effects between outer flow and boundary layer, and there does not seem to be 
much point in giving all the computational details. Experimentally the constant 
in the formula is of the order of 4; the limiting formula for I’ at high Reynolds 
number is thus roughly - -  

r = rRe+- 1--- + ...). ( 24Re- 

The complications near the lip were emphasized by the experiments, which 
indicated a maximum, i.e. an overshoot, in the approach to the asymptotic 
value at high Re. Such an overshoot is indeed conceivable since the boundary 
layer not only restricts the area but also rounds off the lip, thus tending to increase 
the mass flow. However, neither the experiments nor the theoretical considera- 
tions are sufficiently definite to pursue this point as yet. 

4. Free molecular effusion 
It is of interest to collect here a few simple results valid for free molecular 

effusion, i.e. in the limit DIR -+ 0. We use a cylindrical system of co-ordinates in 
velocity space with w the velocity in the plane of the orifice and u normal to it. 
The normalized local velocity distribution of the effusing particles can then be 
written 

with p = 8(RT1)-l. The mean normal velocity and transport of momentum 
through the hole are then 

f (u, W )  dudw = 4p2uw e - ~ ~ u 2 f w ’ ~ d ~ d w ,  

Ti = 4(*7rRTl) 

and 
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The latter result is obvious since p ,  A is the net rate of change of momentum at 
an area A of a wall; thus without reflecting the molecules back, momentum Qp, A 
passes through A per unit time. 

The flux df kinetic energy becomes 

i.e. one obtains the well-known result that the flux of kinetic energy through the 
orifice is larger by iRTl than the product of mass flow and mean kinetic energy 
of the gas in the container. 

The result has an interesting consequence on the energy balance. In  the steady 
state, the mass flow riz is continuously replaced. Consequently, if the effusion 
formula is taken literally, there appears to be a net loss of energy from the con- 
tainer since excess energy QRT, flows out through the orifice. Consequently the 
temperature in the effusing jet must differ from TI and a heat flow q must exist 
in the container. One can work out the heat flow approximately by matching a 
continuum heat conduction solution for r > A to the heat flux m2RTl at a half 
sphere with T = A. One finds that the difference in temperature is of order 
(D/A)2 and hence negligible in the limit. Furthermore, one can estimate the 
entropy production in the upstream container and show that it too is negligible, 
in agreement with more general considerations given below. 

The momentum and the excess kinetic energy are imparted to the walls in the 
downstream container by direct wall collisions. For example, if the beam effuses 
into a cylindrical pipe of radius R, with A > R,, B D, one obtains a shear stress 
distribution 7 ( x )  along the wall 

with a maximum stress at x = J(#)R, and, of course, the integral of 7 with respect 
to x from 0 to co is &A. The heat flux q due to the excess beam energy is dis- 
tributed similarly. Half the total number of effusing molecules collide with the 
wall for x < R,. Consequently a density gradient along the axis of the down- 
stream container is built up and the flow is similar to, for instance, Knudsen flow 
through a long tube. Note that in the effusion case the far downstream pressure 
p ,  and the mass flow riz are given by the experimental conditions. The pressure 
p: just downstream of the orifice is larger than p,. If p, /p;  9 1 is required, then 
R, has to be chosen sufficiently large. 

5. Entropy production in orifice flow 

(1)  to the equilibrium state ( 2 )  is given by 
The total change of entropy for the complete flow from the equilibrium state 

where S denotes the entropy per unit mass and R the gas constant per unit 
mass. 
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Ifpl  > p,, the entropyincrease perunit mass is large, but the gas flow upstream 
of the orifice is independent of p,. Consequently the entropy increase has to be 
produced downstream of the orifice, 

In  the limit Re -+ 00, the flow is isentropic upstream of a shock wave and the 
macroscopic mechanism for entropy production is the shock wave system in the 
supersonic jet downstream of the orifice. For example, with the pressure ratio 
of lo3 used here, a normal shock at a Mach number somewhat larger than 
10 suffices. 

In  the opposite limit Re -+ 0, the problem is more interesting. From the general 
thermodynamic argument given above, the irreversible entropy production 
upstream of the orifice must be negligibly small. Consequently, the molecular 
distribution function must be almost everywhere locally Maxwellian. This is 
true for the limiting distribution in the effusing beam which can be transformed 
into a locally Maxwellian distribution function. It must also be true for the 
next approximations valid at finite Reynolds numbers. 

The entropy in free molecular flow is produced downstream by the irreversible 
processes in the pipe flow, e.g. as in Knudsen flow through a long tube. 

6. Apparatus and measurements 
(i) General technique 

To obtain the mass flow riz, one can follow essentially two different approaches. 
(1) One measures the decay of the pressure in the upstream container as function 
of time and obtains riz by differentiating the resulting decay curve. (2) One can 
operate at  steady-state conditions, i.e. by continuously pumping the gas through 
the orifice and leaking a metered quantity of gas into the upstream container. 
When the pressure in the upstream container has reached a stationary value, the 
metered gas quantity equals the mass flow through the orifice at thcs pressure. 

In  the present measurements the second methodwas applied. The general par- 
ticulars of the apparatus are dictated by the choice of the orifice diameter D. 
Here one has to compromise between the need to make D large in order to reduce 
the corrections for finite lip thickness (the so-called Clausing correction (1932)) 
and to insure a nearly perfect circular hole and the limitations due to the avail- 
able pumps. The ultimate vacuum and the pumping speed must be such that one 
can operate a t  large RIB still maintaining a large pressure ratio across the 
aperture. 

The pressure ratio was chosen to be lo3 or higher. With the ultimate vacuum 
of a good standard diffusion pump of approximately 5 x lO-'mrn of mercury, 
one has to limit the upstream pressure to the micron range. The mean free paths 
for the three gases investigated, He, A and N,, are at lp  pressure 12.7, 4.50 and 
4.44 cm respectively. The orifice diameter was thus chosen to be about 0-1 cm. 
The dimensions of the upstream container have to be large compared to D and A. 
The dimensions of the downstream container are limited only by the conditions 
that the number of back-scattered molecules passing through the orifioe should 
be negligibly small. Both the upstream and downstream conditions are met by 
using a cylindrical vessel of about 40cm internal diameter. Originally it was 
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intended to use glass tubing. However, it proved impossible to obtain tubing 
with a wall thickness uniform enough and sufficiently free of stresses for safe 
operations. Hence the tank was made of steel. 

The general layout of the apparatus is shown in figure 3 which is largely self- 
explanatory. All pressures were measured with McLeod gauges. For low pres- 
sures a, cathethometer was used to read the gauge. A Pirani gauge was used only 
to monitor the pressure variation in the tank and to check on the attainment of a 

Pirani 
gauge 

McLeod gauge 
1&loO0/1 

McLeod gauge 

and 
0.01 -30,~ 

NZ trap @@)5-1OCM)/ 

Pumps 
(MCF 300 + KC 46) 

FIGURE 3. Apparatus for effusion studies. 

constant pressure, i.e. steady conditions. The large volumes and the relatively 
small mass flows made the time constant of the system large. This had two un- 
pleasant consequences; the time needed to measure a simple point was on average 
about 1 hr, and the system became quite sensitive to temperature changes in the 
room. The maximum permissible rate of temperature change was about 1 "C/hr. 

(ii) Detailed construction and techniques 
OriJice construction 

Two orifices were used. One was a circular hole drilled into a piece of 0.0025 cm 
thick shim stock and cemented on a circular plate with a hole of about 1 cm 
diameter with tapered edges. This plate in turn fitted with O-ring seals into the 
dividing wall in the tank. The orifice was selected by inspection under a large 
optical comparator from a large number of similarly made samples. The orifice 
was very nearly circular with well-defined edges and a diameter D = 0.1047 cm. 

This orifice construction had the disadvantage that it was impossible to check 
the cemented sectich for leaks. Hence a second orifice of integral construction 
was built with roughly the same dimensions: lip thickness 0.0025cm and a 
diameter D = 0.09855 em. Measurements were made with both orifices; within 
the experimental scatter no difference was found. 

Xeals, leak rate, degassing 

Steel and glass constructionwasusedthroughout. No seals except O-ring seals 
or glass-blown seals were used. The main tank was helium-testedbefore use. The 
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whole apparatus remained at  pressures of a micron or less for months at a time in 
order to reduce the degassing rate since the system could not be baked. The 
ultimate leak plus degassing rate thus obtained raised the pressure in the tank 
from the ultimate pump pressure of 10-6mm by approximately 0.2p/hr. For 
most measurements this rate of pressure rise was entirely negligible. The measure- 
ments at the lowest pressure, however, show an increased scatter which can be 
attributed to variable degassing. 

Gases, mass-flow measurements 

Most measurements were made with He, A and N,. A few measurements were 
also made with CO,. The gases used were taken from commercially available 
tanks cleaned only by removing condensable gases in a liquid nitrogen trap. 
Argon was liquified in the trap and redistilled. 

To regulate the mass flow into the system a number of more or less complicated 
schemes were tried. Actually it turned out that a good steel needle valve proved 
superior over most of the more complicated devices, in particular because when 
such a valve was used the volume in the mass-flow measuring device could be 
made very small indeed. This was very important because of the need to reduce 
scatter by temperature variation. 

Themass flow was measured by timing the displacement of a silicone oil 
meniscus in a calibrated burette with a precision stop watch. The volume flow 
at atmospheric pressure which was measured in this fashion varied from about 
2 to lo5 cm3 per hour. 

Accuracy 
Each of the plotted points is an average of at least three measurements 

at the same setting and represents a separate absolute measurement of the mass 
flow; some of the points were taken more than a year apart. The estimated error 
from known sources, e.g. the mass-flow measurements, temperature variation, 
orifice geometry, etc., is about k 2 yo. Additional errors which are difficult to 
assess explicitly arose from uneven degassing at low pressure, lack of attainment 
of complete equilibrium, and the well-known difficulties in reading absolute 
pressures on a McLeod gauge with great accuracy. The over-all error is apparent 
from the scatter in the measured points. 

With an improved design and improved techniques one could certainly improve 
the accuracy considerably, particularly if one restricted the measurements to a 
limited pressure range or flow regime. 

7. Results of the measurements 
The bulk of the mass-flow measurements is shown in figures 4-6. Figure 4 

gives the over-all behaviour of I’ normalized by rk, the theoretical asymptobie 
value for free molecular ffow, as functions of Re-l for three gases. The Ggure 
serves mainly to show the general trend of the transition curve as well as the 
similarity between the three gases with molecular weights of 4, 28 and 40 
respectively. 
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Figure 6 shows the approach of I? to the free molecular limit. The ratio of r 
for He and A to the limit value corrected for finite channel length is plotted versus 
D/A. The general agreement in behaviour with the approximate theoretical 
formula for near free molecular flow is shown. 

Knudsen's measurements (1909) as usually given in text-books agree to within 
2 or 3 yo with the limiting value at about D / A  6 0.1; however, it  appears that 
Knudsen's values have not been corrected for finite lip thickness. If  the Clausing 

r/rx 

0.00 1 0 0  1 0.1 1.0 10 
1 JRe 

value of r for free molecular flow. 
FI~URE 4. Experimental values of r/rr 68 1/Re; is the theoretical asymptotic 

1.3 

1.2 

< 1-1 
k 

1.0 

0.9 
002 0.05 01 0.2 0.5 1.0 

DIA 
FIGURE 5. Graph showing approach of I' to free molecular limit. 

5 10 50 100 500 1000 

Re 

FIGURE 0. Experimental values of I' v8 Re for N, at high pressures. 



78 H .  W .  Lieprnann 

correction is applied to Ifnudsen’s results one obtains the values in table 2. 
Knudsen’s measured I”s are averages of a number of measurements; the two 
values for H, and 0, refer to the two different holes used by Knudsen which 
require a different correction. The Clausing correction was applied to the circle 
of area equal to that of the somewhat irregular holes. The corrected results are 
evidently internally quite consistent and in good agreement with the present 
measurements. 

Gas 
r l r k  

(corrected) 

H Z  0.979 1-07 
1-02 1.07 

0 2  0.980 1.07 
1.04 1.095 

CO, 0.949 1.04 

TABLE 2 
______ ____ .- - 

a r 
Gas Y Ma, (measured) (measured) 
A 1.66 3.50 0-812 0.591 
N* 1.40 2-76 0.824 0.564 
COZ 1.30 2.63 0.830 0.550 

TABLE 3 

Figure 6 shows I? for N, plotted versus Re at the high pressures. Since I? for 
Re +- co is not exactly known, the absolute value of I’ is plotted. The measured 
points approach an asymptote of r = 0-56. Frankl’s theoretical value for a slit 
is I? = 0.582. Perry (1949) carried out a set of orifice measurements in air at very 
high Reynolds number ( - lo5). His measurements give I? = 0.575. 

This last value should be the closest to the true theoretical limit. Still, the dif- 
ferences between Perry’s value at high Reynolds numbers and the asymptotic 
value reached in the present measurements at a much lower Reynolds number 
are not significant in view of the experimental error limits. Even Frankl’s 
numerical computations could conceivably be off by a few per cent, and hence the 
data do not yet suffice to demonstrate definitely a mass-flow difference between 
a slit and an equivalent orifice in transonic flow. 

Finally a set of measurements at a high Reynolds number Re - 200 was made 
to investigate the trend of the transonic orifice flow with y. The results are given 
in table 3. The measured variation of I? and hence a with y is surprisingly small 
and hardly outside the experimental scatter. More accurate measurements in 
the transonic limit seem definitely worth while. 

8. Conclusions 
In  general the measurements demonstrate the transition between the free 

molecular limit and the Euler limit. The transition region is relatively narrow, 
the Reynolds number ranges from about 0.1 to 100. 
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The first-order corrections valid for nearly zero and large Reynolds numbers 
agree with the measurements fairly well and do actually cover the larger part of 
the transition zone. As always, the remaining intermediate range near Re N 1 
is theoretically the most difficult. The flow here should resemble conipressible 
viscous sink flow. According to the general entropy argument, the entropy pro- 
duction in the flow must be small; hence dissipation and heat flow must be small 
or restricted to narrow zones. 

The investigation has certainly posed more problems than it has solved. Foi 
example, transonic orifice flow is well worth a separate experimental study; 
in particular orifice flow with complex gases and reacting gases promises to be 
most interesting. The limiting pressure ratios and Mach numbers depend strongly 
on y ;  for y < 5/4, even the turning angle for expansion to zero pressure is larger 
than n. The theoretical conditions near the lip for this case are rather interesting. 
The expansion time in this restricted Prandtl-Meyer region is very short and 
hence relaxation effects should be observable. 

In  the free molecular and near free molecular regime there remain a host of 
problems for flows for which the wall temperature is much different from the gas 
temperature. This problem arises in connexion with molecular beams produced 
by shock-wave heatedgases, which have begun to receivemuchattentionrecently. 
A particular problem here is the effusion of charged particles (Sturtevant 1960). 

The investigations at the California Institute of Technology are being con- 
tinued with the aim of studying different regimes in the (Ma2, Re)-plane and in 
order to improve the accuracy of the measurements as well as the theoretical 
description. 

The author would like to acknowledge very helpful discussions with R. 
Narasimha; in particular the (Ma2, Re)-representation is due to him. Dr J. 
Broadwell kindly corrected an early misconception on the transonic problem. 
The work was carried out with the support of the Office of Naval Research, 
Contract Nonr-220 (2 1). 
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